Brief history of laboratory-based epidemiological surveillance in the Mexican Institute for Social Security

Main Article Content

Clara Esperanza Santacruz-Tinoco https://orcid.org/0000-0003-0039-986X
Julio Elias Alvarado-Yaah https://orcid.org/0000-0002-3954-3024
Yu-Mei Anguiano-Hernández https://orcid.org/0000-0003-1014-6313
Bernardo Martínez-Miguel https://orcid.org/0000-0002-7230-9045
David Alejandro Cabrera-Gaytán https://orcid.org/0000-0001-5314-4786
Leticia Chávez-Navarro https://orcid.org/0009-0002-2904-3293

Keywords

Epidemiological Surveillance, Laboratories, Polymerase Chain Reaction

Abstract

Epidemiological surveillance of communicable diseases has had a cross-cutting role that has contributed to scientific advancement, knowledge generation, and, above all, to organizing and focusing public health and medical care activities in the country. We refer to laboratory-based epidemiological surveillance. In this regard, the Mexican Institute for Social Security (IMSS according to its initials in Spanish) has not fallen short of expectations with the creation of a network of laboratories for laboratory-based epidemiological surveillance in different states, with recognition of their technical competence by the Ministry of Health. These laboratories were created following the need arising from the pandemic emergency of the influenza virus in 2009 and year after year their diagnostic capacity has expanded, extending their diagnostic reach to various vector-borne pathologies and vaccine-preventable diseases that are important in Mexico. This document summarizes the main events, challenges, and successes experienced by the Institute's network of epidemiological surveillance laboratories since its creation. The initial executor is the operational staff of the medical unit, who are those in direct contact with the sick person.

Abstract 40 | PDF (Spanish) Downloads 16

References

1. Acuerdo número 130 por el que se crea el Comité Nacional para la Vigilancia Epidemiológica. México: Diario Oficial de la Federación; 9 de junio de 1995. Disponible en: https://hgm.salud.gob.mx/descargas/pdf/dirgral/marco_juridico/acuerdos/acu_08.pdf.

2. Instituto Mexicano del Seguro Social. Informe al Ejecutivo Federal y al Congreso de la Unión sobre la situación financiera y los riesgos del Instituto Mexicano del Seguro Social 2008-2009. México: IMSS; 8 de mayo de 2009. Disponible en: http://www.imss.gob.mx/conoce-al-imss/informes-anteriores.

3. Instituto Mexicano del Seguro Social. Informe de Labores 2009-2010 y Programa de Actividades 2010. México: IMSS; 2010. Disponible en: http://www.imss.gob.mx/conoce-al-imss/informes-anteriores.

4. Instituto Mexicano del Seguro Social. Informe de Labores 2011-2012 y Programa de Actividades. México, 2011. Disponible en: http://www.imss.gob.mx/conoce-al-imss/informes-anteriores.

5. Barrera Badillo G, Ramírez-González E, Aparicio-Antonio R, et al. Highly Pathogenic Avian Influenza A (H7N3) Virus Infection in Two Poultry Workers — Jalisco, Mexico, July 2012. MMWR. 2012;61(36):726-7.

6. Belser JA, Davis CT, Balish A, et al. Pathogenesis, transmissibility, and ocular tropism of a highly pathogenic avian influenza A (H7N3) virus associated with human conjunctivitis. J Virol. 2013;87(10):5746-54. doi: 10.1128/JVI.00154-13.

7. Instituto Mexicano del Seguro Social. Manual de Organización de la Dirección de Prestaciones Médicas. México: IMSS; 21 de febrero de 2012.

8. Instituto Mexicano del Seguro Social. Informe de Labores 2015-2016 y Programa de Actividades. México: IMSS; 2016. Disponible en: http://www.imss.gob.mx/conoce-al-imss/informes-anteriores.

9. Instituto Mexicano del Seguro Social. Informe de Labores 2016-2017 y Programa de Actividades. México: IMSS; 2017. Disponible en: http://www.imss.gob.mx/conoce-al-imss/informes-anteriores.

10. Carabali M, Maxwell L, Levis B, et al. Heterogeneity of Zika virus exposure and outcome ascertainment across cohorts of pregnant women, their infants and their children: a metadata survey. BMJ Open. 2022;12:e064362. doi: 10.1136/bmjopen-2022-064362.

11. The Zika Virus Individual Participant Data Consortium. Adverse fetal and perinatal outcomes associated with Zika virus infection during pregnancy: an individual participant data meta-analysis. eClinicalMedicine 2025;83:103231. doi: 10.1016/j.eclinm.2025.103231.

12. Instituto Mexicano del Seguro Social. Manual de Organización de la Dirección de Prestaciones Médicas. México: IMSS; 21 de julio de 2021.

13. Muñoz-Medina JE, Grajales-Muñiz C, Salas-Lais AG, et al. SARS-CoV-2 IgG Antibodies Seroprevalence and Sera Neutralizing Activity in MEXICO: A National Cross-Sectional Study during 2020. Microorganisms. 2021;9:850. doi: 10.3390/microorganisms9040850.

14. Alvarado-Yaah JE, Cabrera-Gaytán DA, Tinoco-Santacruz CE, et al. Retrospective Search for SARS-CoV-2 during the Winter Season, 2019-2020 in Social Security Population of Mexico. J Community Med Public Health. 2024;8:418. doi: 10.29011/2577-2228.100418.

15. Taboada B, Zárate S, Iša P, et al. Genetic Analysis of SARS-CoV-2 Variants in Mexico during the First Year of the COVID-19 Pandemic. Viruses. 2021;13:2161. doi: 10.3390/v13112161.

16. Zárate S, Taboada B, Rosales-Rivera M, et al. Regional epidemic dynamics and Delta variant diversity resulted in varying rates of spread of Omicron-BA.1 in Mexico. bioRxiv; 2022. doi: 10.1101/2022.10.18.512746.

17. Zárate S, Taboada B, Rosales-Rivera M, et al. Omicron-BA.1 Dispersion Rates in Mexico Varied According to the Regional Epidemic Patterns and the Diversity of Local Delta Subvariants. Viruses. 2023;15(1):243. doi: 10.3390/v15010243.

18. Fernandes-Matano L, Salas-Lais AG, Grajales-Muñiz C, et al. Longevity and Neutralizing Capacity of IgG Antibodies against SARS-CoV-2 Generated by the Application of BNT162b2, AZD1222, Convidecia, Sputnik V, and CoronaVac Vaccines: a Cohort Study in the Mexican Population. Microbiol Spectr. 2023;11(1):e0237622. doi: 10.1128/spectrum.02376-22.

19. Garay E, Whelan SPJ, DuBois RM, et al. Immune response to SARS-CoV-2 variants after immunization with different vaccines in Mexico. Epidemiol Infect. 2024;152:e30. doi: 10.1017/S0950268824000219.

20. Angeles-Martinez J, Monroy-Muñoz IE, Muñoz-Medina JE, et al. A Potential Association between Abdominal Obesity and the Efficacy of Humoral Immunity Induced by COVID-19 and by the AZD1222, Convidecia, BNT162b2, Sputnik V, and CoronaVac Vaccines. Vaccines (Basel). 2024;12(1):88. doi: 10.3390/vaccines12010088.

21. Cabrera Gaytán DA, Hernández Bautista PF, Santacruz Tinoco CE, et al. Diagnosis of SARS-CoV-2: Experience with rapid immunochromatography tests and RT‒qPCR. J Clin Virol Plus. 2025;5(2):100207. doi: 10.1016/j.jcvp.2025.100207.

22. World Health Organization. Outbreak of suspected fungal meningitis associated with surgical procedures performed under spinal anaesthesia – the United States of America and Mexico. Geneva: WJO; 1 June 2023. Disponible en: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON470.

23. Instituto Mexicano del Seguro Social. Manual de Organización de la Dirección de Prestaciones Médicas. México: IMSS; 8 de octubre de 2021.

24. Santacruz Tinoco CE, Hernández Bautista PF, Cabrera Gaytán DA, et al. Differences in Ct Values in qPCR Tests for the Diagnosis of Mpox: Results of a Cross-Sectional Study. Microorganisms. 2025;13(6):1355. doi: 10.3390/microorganisms13061355.

25. Dirección General de Epidemiología. Boletín informativo No. 10. Situación epidemiológica de las enfermedades prevenibles por vacunación en México. Semana 23. México: Secretaría de Salud; 13 de junio de 2025. Disponible en: https://www.gob.mx/salud/documentos/situacion-epidemiologica-de-enfermedades-prevenibles-por-vacunacion.

26. Dirección General de Epidemiología. Informe diario del brote de sarampión en México, 2025. México: Secretaría de Salud; 16 de junio de 2025. Disponible en: https://www.gob.mx/salud/acciones-y-programas/sarampion-2025-informacion-relevante.

27. World Health Organization. Avian Influenza A(H5N1) – Mexico. Geneva: WHO; 17 April 2025. Disponible en: https://www.who.int/emergencies/disease-outbreak-news/item/2025-DON564.