Triglyceride-glucose index changes after one year of antiretroviral therapy
Main Article Content
Keywords
Anti-Retroviral Agents, HIV, Insulin Resistance, Glucose, Triglycerides
Abstract
Background: Antiretroviral therapy (ART) is highly effective for treating HIV, but it is associated with metabolic alterations, such as insulin resistance (IR), which can be assessed using HOMA-IR, or using more accessible alternatives such as triglyceride-glucose (TG) index, which has been validated in Mexican population with a cut-off point of 4.68, with sensitivity of 96.5% and specificity of 85%. However, there are no studies analyzing the applicability and changes of the TG index after ART initiation in HIV-positive patients.
Objective: To describe the frequency of IR using the TG index in HIV patients without previous treatment (naive) before and one year after starting ART.
Material and methods: Comparative cross-sectional study. The Internal Medicine and Infectology Department records of patients recently diagnosed with HIV from a third-level hospital during 2010-2025 were reviewed. Biochemical, clinical, and anthropometric data were collected at baseline and one year after treatment initiation. Variables were recorded and analyzed blindly using SPSS, v. 25, with nonparametric statistics. It was considered significant a p with a < 0.05 value.
Results: 86 cases, 88.4% men, with a median age of 34.5 years (IQR 24-44.25), had a TG index of 4.70 (IQR 4.55-4.89) at baseline and 4.77 (IQR 4.63-4.89) at 1 year, with a statistically significant increase (p = 0.025).
Conclusions: Out of patients with naive HIV and normal baseline TG index, 64% exhibited an elevation above the IR threshold (> 4.68) after one year of ART. In contrast, among those with an already elevated baseline TG index, 72% remained elevated after one year of treatment.
References
1. Luo Y, Sun L, He Y, et al. The triglyceride-glucose index trajectories are associated with cardiovascular diseases in people living with HIV: evidence from a prospective cohort study in China, 2005-2022. BMC Public Health. 2025;25(1):465. doi: 10.1186/s12889-025-21744-1
2. Cummins NW. Metabolic complications of chronic HIV infection: A narrative review. Pathogens. 2022;11(2):197. doi: 10.3390/pathogens11020197
3. World Health Organization. Antiretroviral therapy. Geneva: WHO; 2021.
4. Capeau J, Lagathu C, Béréziat V, et al. Recent data on adipose tissue, insulin resistance, diabetes and dyslipidaemia in antiretroviral therapy-controlled HIV-infected persons. Curr Opin HIV AIDS. 2021;16(3):141-7. doi: 10.1097/coh.0000000000000674
5. Mulindwa F, Kamal H, Castelnuovo B, et al. Association between integrase strand transfer inhibitor use with insulin resistance and incident diabetes mellitus in persons living with HIV: a systematic review and meta-analysis. BMJ Open Diabetes Res Care. 2023;11(1):e003136. doi: 10.1136/bmjdrc-2022-003136
6. Lipke K, Kubis-Kubiak A, Piwowar A. Investigating the role of nucleoside reverse transcriptase inhibitors in modulating lipotoxicity: Effects on lipid dynamics, stress pathways, and insulin resistance on the function of dopaminergic neurons. Biomed Pharmacother. 2024;181(117701):117701. doi: 10.1016/j.biopha.2024.117701
7. Bratt G, Brännström J, Missalidis C, et al. Development of type 2 diabetes and insulin resistance in people with HIV infection: Prevalence, incidence and associated factors. PLoS One. 2021;16(6):e0254079. doi: 10.1371/journal.pone.025407
8. Lee SH, Park SY, Choi CS. Insulin resistance: From mechanisms to therapeutic strategies. Diabetes Metab J. 2022;46(1):15-37. doi: 10.4093/dmj.2021.0280
9. Thompson MA, Horberg MA, Agwu AL, et al. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2021;73(11):e3572-605. doi: 10.1093/cid/ciaa1391
10. Sánchez-García A, Rodríguez-Gutiérrez R, Mancillas-Adame L, et al. Diagnostic accuracy of the triglyceride and glucose index for insulin resistance: A systematic review. Int J Endocrinol. 2020;2020:4678526. doi: 10.1155/2020/4678526
11. Budak GG, Vatan A, Güçlü E, et al. Concordance between homeostatic model assessment and triglyceride glucose index in assessing insulin resistance among HIV-infected patients. Saudi Med J. 2025;46(2):157-62. doi: 10.15537/smj.2025.46.2.20240769
12. Oliveira PWC, Mill JG, Santos IS, et al. Triglyceride-glucose index demonstrates reasonable performance as a screening tool but exhibits limited diagnostic utility for insulin resistance: Data from the ELSA-Brasil cohort. Nutr Res. 2024;124:65-72. doi: 10.1016/j.nutres.2024.01.016
13. Tahapary DL, Pratisthita LB, Fitri NA, et al. Challenges in the diagnosis of insulin resistance: Focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab Syndr. 2022;16(8):102581. doi: 10.1016/j.dsx.2022.102581
14. Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347-51. doi: 10.1210/jc.2010-0288
15. Son DH, Lee HS, Lee YJ, et al. Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr Metab Cardiovasc Dis. 2022;32(3):596-604. doi: 10.1016/j.numecd.2021.11.017
16. Vazquez-Madrigal MC, Pérez-López J, Martínez-Hernández H, et al. Triglyceride-glucose index as a biomarker for insulin resistance and cardiometabolic risk in people living with HIV. Diabetes Metab Syndr. 2021;15(5):102200. doi: 10.1016/j.dsx.2021.102200
17. Pan SY, de Groh M, Aziz A, et al. Relation of insulin resistance with social-demographics, adiposity and behavioral factors in non-diabetic adult Canadians. J Diabetes Metab Disord. 2015;15:31. doi: 10.1186/s40200-016-0253-7
18. Li T, Sun L, He Y, et al. Increasing trends of overweight and obesity in treatment-naive people living with HIV in Shenzhen from 2014 to 2020: an emerging health concern. Front Public Health. 2023;11:1186838. doi: 10.3389/fpubh.2023.1186838
19. Campos-Nonato I, Galván-Valencia O, Hernández-Barrera L, et al. Prevalencia de obesidad y factores de riesgo asociados en adultos mexicanos: resultados de la Ensanut 2022. Salud Publica Mex. 2023;14(65):s238-47. doi: 10.21149/14809
20. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398(10304):957-80. doi: 10.1016/S0140-6736(21)01330-1
21. Pavía-López AA, Alcocer-Gamba MA, Ruiz-Gastelum ED, et al. Guía de práctica clínica mexicana para el diagnóstico y tratamiento de las dislipidemias y enfermedad cardiovascular aterosclerótica. Arch Cardiol Mex. 2022;92(Supl):1-62. doi: 10.24875/ACM.M22000081
22. Shen Y, Wang J, Wang Z, et al. Prevalence of dyslipidemia among antiretroviral-naive HIV-infected individuals in China. Medicine (Baltimore). 2015;94(48):e2201. doi: 10.1097/MD.0000000000002201
23. Iqbal S, Salman S, Akhtar M, et al. Spectrum of dyslipidemias in treatment-naïve human immunodeficiency virus-infected patients presenting to an HIV clinic of a tertiary care hospital. Cureus. 2022;14(2):e21972. doi: 10.7759/cureus.21972
24. Elizalde-Barrera CI, Juárez-Mendoza CV, Maliachi-Díaz A, et al. Prevalencia de glucosa alterada en ayuno y dislipidemia entre pacientes mexicanos con VIH naïve a tratamiento antirretroviral. Cir Cir. 2023;91(1):100-6. doi: 10.24875/CIRU.21000594
25. Shen Y, Wang Z, Liu L, et al. Prevalence of hyperglycemia among adults with newly diagnosed HIV/AIDS in China. BMC Infect Dis. 2013;13(1):79. doi: 10.1186/1471-2334-13-79
26. Jiménez-Villalba YZ, Madrigal-Santillán DO, González-Virla BJG, et al. Factores asociados para prediabetes en pacientes con virus de inmunodeficiencia humana. Rev Med Inst Mex Seguro Soc. 2023;61(Suppl 3):S380-6. doi: 10.5281/zenodo.8319825
27. Tiozzo E, Rodriguez A, Konefal J, et al. The relationship between HIV duration, insulin resistance and diabetes risk. Int J Environ Res Public Health. 2021;18(8):3926. doi: 10.3390/ijerph18083926
28. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299-304. doi: 10.1089/met.2008.0034
29. Irace C, Carallo C, Scavelli FB, et al. Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int J Clin Pract. 2013;67(7):665-72. doi: 10.1111/ijcp.12124
30. Liu DF, Zhang XY, Zhou RF, et al. Glucose metabolism continuous deteriorating in male patients with human immunodeficiency virus accepted antiretroviral therapy for 156 weeks. World J Diabetes. 2023;14(3):299-312. doi: 10.4239/wjd.v14.i3.299
31. Tamiru-Tadesse W, Adankie T, Shibeshi W, et al. Prevalence and predictors of glucose metabolism disorders among People Living with HIV on combination antiretroviral therapy. Plos One. 2022;17(1):1-16. doi: 10.1371/journal.pone.0262604
32. lama L, Palella FJ Jr, Abraham AG, et al. Inaccuracy of haemoglobin A1c among HIV-infected men: effects of CD4 cell count, antiretroviral therapies and haematological parameters. J Antimicrob Chemother. 2014;69(12):3360-7. doi: 10.1093/jac/dku295
