Educación médica e inteligencia artificial: perspectivas y desafíos éticos

##plugins.themes.themeEleven.article.main##

Omar Chávez-Martínez https://orcid.org/0000-0003-2633-1898
Leonardo Adriano Ragacini https://orcid.org/0000-0002-2798-4551

Palabras clave

Inteligencia Artificial, Educación Médica, Formación Profesional, ChatGPT

Resumen

La inteligencia artificial (IA) impulsa la innovación en la educación médica al facilitar aprendizaje personalizado, retroalimentación inmediata y simulaciones clínicas. No obstante, plantea riesgos como la pérdida de habilidades humanas, desinformación y problemas éticos. ChatGPT ha ganado protagonismo por su capacidad de generar texto, aunque sin comprensión real. En el presente artículo se buscó analizar el uso de la IA, con énfasis en ChatGPT, en la formación médica, para identificar beneficios, limitaciones e implicaciones éticas, por lo cual se hizo una revisión integrativa cualitativa con búsqueda sistemática en PubMed (2020-2025), utilizando descriptores MeSH relacionados con inteligencia artificial y educación médica. Se incluyeron 37 artículos en inglés, de acceso abierto y texto completo. La información fue analizada y sintetizada mediante un enfoque temático, organizado en 4 ejes: aplicaciones pedagógicas, beneficios, desafíos y recomendaciones éticas, gracias a lo cual tuvimos los siguientes resultados: la IA apoya la simulación clínica, personalización del aprendizaje y acceso equitativo. Se destacan beneficios como el razonamiento clínico y el aprendizaje autónomo. Persisten desafíos, como sesgos, privacidad y desinformación. Se proponen 5 pilares para su integración y una clasificación profesional en consumidores, traductores y desarrolladores. La curaduría digital surge como eje clave para garantizar calidad y confiabilidad. Concluímos que la IA puede transformar la educación médica si se implementa con ética, supervisión y un enfoque humanista.

Abstract 94 | PDF Downloads 103

Referencias

1. Furfaro D, Celi LA, Schwartzstein RM. Artificial Intelligence in Medical Education: A Long Way to Go. Chest. 2024;165(4):771-774. doi: 10.1016/j.chest.2023.11.028.

2. Civaner MM, Uncu Y, Bulut F, et al. Artificial intelligence in medical education: a cross-sectional needs assessment. BMC Med Educ. 2022;22(1):772. doi: 10.1186/s12909-022-03852-3.

3. De Angelis L, Baglivo F, Arzilli G, Privitera GP, Ferragina P, Tozzi AE, Rizzo C. ChatGPT and the rise of large language models: the new AI-driven infodemic threat in public health. Front Public Health.

2023;11:1166120. doi: 10.3389/fpubh.2023.1166120.

4. Jackson P, Ponath Sukumaran G, Babu C, et al. Artificial intelligence in medical education - perception among medical students. BMC Med Educ. 2024 Jul 27;24(1):804. doi: 10.1186/s12909-024-05760-0.

5. Gordon M, Daniel M, Ajiboye A, et al. A scoping review of artificial intelligence in medical education: BEME Guide No. 84. Med Teach. 2024;46(4):446-470. doi: 10.1080/0142159X.2024.2314198.

6. Crotty E, Singh A, Neligan N, et al. Artificial intelligence in medical imaging education: Recommendations for undergraduate curriculum development. Radiography (Lond). 2024;30 Suppl 2:67-73. doi: 10.1016/j.radi.2024.10.008.

7. Çalışkan SA, Demir K, Karaca O. Artificial intelligence in medical education curriculum: An e-Delphi study for competencies. PLoS One. 2022;17(7):e0271872. doi: 10.1371/journal.pone.0271872.

8. Azer SA, Guerrero APS. The challenges imposed by artificial intelligence: are we ready in medical education? BMC Med Educ. 2023;23(1):680. doi: 10.1186/s12909-023-04660-z.

9. Shi X, Yin D, Bai Y, et al. A Bibliographic Dataset of Health Artificial Intelligence Research. Health Data Sci. 2024;4:0125. doi: 10.34133/hds.0125.

10. Saroha S. Artificial Intelligence in Medical Education: Promise, Pitfalls, and Practical Pathways. Adv Med Educ Pract. 2025;16:1039-1046. doi: 10.2147/AMEP.S523255.

11. Moon S, Carlson LA, Moser ED, et al. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification. J Med Internet Res. 2022;24(1):e29015. doi: 10.2196/29015.

12. Stretton B, Kovoor J, Arnold M, et al. ChatGPT-Based Learning: Generative Artificial Intelligence in Medical Education. Med Sci Educ. 2023;34(1):215-217. doi: 10.1007/s40670-023-01934-5.

13. Wang H, Gupta S, Singhal A, et al. An Artificial Intelligence Chatbot for Young People's Sexual and Reproductive Health in India (SnehAI): Instrumental Case Study. J Med Internet Res. 2022;24(1):e29969. doi: 10.2196/29969.

14. Boscardin CK, Gin B, Golde PB, et al. ChatGPT and Generative Artificial Intelligence for Medical Education: Potential Impact and Opportunity. Acad Med. 2024;99(1):22-27. doi: 10.1097/ACM.0000000000005439.

15. Knopp MI, Warm EJ, Weber D, et al. AI-Enabled Medical Education: Threads of Change, Promising Futures, and Risky Realities Across Four Potential Future Worlds. JMIR Med Educ. 2023;9:e50373. doi: 10.2196/50373.

16. Mondal H. Ethical engagement with artificial intelligence in medical education. Adv Physiol Educ. 2025;49(1):163-165. doi: 10.1152/advan.00188.2024.

17. Grabb D. ChatGPT in Medical Education: a Paradigm Shift or a Dangerous Tool? Acad Psychiatry. 2023;47(4):439-440. doi: 10.1007/s40596-023-01791-9.

18. Xu Y, Jiang Z, Ting DSW, et al. Medical education and physician training in the era of artificial intelligence. Singapore Med J. 2024;65(3):159-166. doi: 10.4103/singaporemedj.SMJ-2023-203.

19. Preiksaitis C, Rose C. Opportunities, Challenges, and Future Directions of Generative Artificial Intelligence in Medical Education: Scoping Review. JMIR Med Educ. 2023;9:e48785. doi: 10.2196/48785.

20. Gilson A, Safranek CW, Huang T, et al. Correction: How Does ChatGPT Perform on the United States Medical Licensing Examination (USMLE)? The Implications of Large Language Models for Medical Education and Knowledge Assessment. JMIR Med Educ. 2024;10:e57594. doi: 10.2196/57594. Erratum for: JMIR Med Educ. 2023;9:e45312.

21. Khan RA, Jawaid M, Khan AR, et al. ChatGPT - Reshaping medical education and clinical management. Pak J Med Sci. 2023;39(2):605-607. doi: 10.12669/pjms.39.2.7653.

22. Peacock J, Austin A, Shapiro M, et al. Accelerating medical education with ChatGPT: an implementation guide. MedEdPublish (2016). 2023;13:64. doi: 10.12688/mep.19732.2.

23. Kıyak YS, Emekli E. ChatGPT prompts for generating multiple-choice questions in medical education and evidence on their validity: a literature review. Postgrad Med J. 2024;100(1189):858-865. doi: 10.1093/postmj/qgae065.

24. Rincón EHH, Jimenez D, Aguilar LAC, et al. Mapping the use of artificial intelligence in medical education: a scoping review. BMC Med Educ. 2025;25(1):526. doi: 10.1186/s12909-025-07089-8.

25. Franco D'Souza R, Mathew M, Mishra V, Surapaneni KM. Twelve tips for addressing ethical concerns in the implementation of artificial intelligence in medical education. Med Educ Online. 2024;29(1):2330250. doi: 10.1080/10872981.2024.2330250.

26. Moritz S, Romeike B, Stosch C, et al. Generative AI (gAI) in medical education: Chat-GPT and co. GMS J Med Educ. 2023 Jun 15;40(4):Doc54. doi: 10.3205/zma001636.

27. Ng FYC, Thirunavukarasu AJ, Cheng H, et al. Artificial intelligence education: An evidence-based medicine approach for consumers, translators, and developers. Cell Rep Med. 2023 Oct 17;4(10):101230. doi: 10.1016/j.xcrm.2023.101230.

28. Bhuyan SS, Sateesh V, Mukul N,et al. Generative Artificial Intelligence Use in Healthcare: Opportunities for Clinical Excellence and Administrative Efficiency. J Med Syst. 2025;49(1):10. doi: 10.1007/s10916-024-02136-1.

29. Liaw ST, Liyanage H, Kuziemsky C, et al. Ethical Use of Electronic Health Record Data and Artificial Intelligence: Recommendations of the Primary Care Informatics Working Group of the International Medical Informatics Association. Yearb Med Inform. 2020;29(1):51-57. doi: 10.1055/s-0040-1701980.

30. Jeyaraman M, Balaji S, Jeyaraman N, et al. Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare. Cureus. 2023;15(8):e43262. doi: 10.7759/cureus.43262.

31. Omar M, Ullanat V, Loda M, et al. ChatGPT for digital pathology research. Lancet Digit Health. 2024;6(8):e595-e600. doi: 10.1016/S2589-7500(24)00114-6.

32. Arora G, Joshi J, Mandal RS, et al. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens. 2021;10(8):1048. doi: 10.3390/pathogens10081048.

33. de Zegher I, Norak K, Steiger D, et al. Artificial intelligence based data curation: enabling a patient-centric European health data space. Front Med (Lausanne). 2024 May 15;11:1365501. doi: 10.3389/fmed.2024.1365501. Erratum in: Front Med (Lausanne). 2024;11:1455319. doi: 10.3389/fmed.2024.1455319.

34. Ibeneme S, Karamagi H, Muneene D, et al. Strengthening Health Systems Using Innovative Digital Health Technologies in Africa. Front Digit Health. 2022;4:854339. doi: 10.3389/fdgth.2022.854339.

35. Zhao K, Farrell K, Mashiku M, et al. A search-based geographic metadata curation pipeline to refine sequencing institution information and support public health. Front Public Health. 2023;11:1254976. doi: 10.3389/fpubh.2023.1254976.

36. Lamurias A, Jesus S, Neveu V, et al. Information Retrieval Using Machine Learning for Biomarker Curation in the Exposome-Explorer. Front Res Metr Anal. 2021;6:689264. doi: 10.3389/frma.2021.689264.

37. Domrös-Zoungrana D, Rajaeean N, Boie S, et al. Medical Education: Considerations for a Successful Integration of Learning with and Learning about AI. J Med Educ Curric Dev. 2024;11:23821205241284719. doi: 10.1177/23821205241284719.