Gen regulador de autoinmunidad (AIRE) y desarrollo de tiroiditis autoinmune en síndrome de Down

##plugins.themes.themeEleven.article.main##

Mari Carmen Moran-Espinosa https://orcid.org/0000-0002-1946-0790
Javier Tadeo Granados-Riverón https://orcid.org/0000-0002-0368-225X
Gamaliel Benítez-Arvizu https://orcid.org/0000-0001-6065-7176
Sara Marbelodet Sosa-Delgado https://orcid.org/0000-0003-2865-6194
Mario Alberto Gómez-Mejía https://orcid.org/0009-0008-9588-6591
Hector Diaz-Garcia https://orcid.org/0000-0002-2375-4759

Palabras clave

Tiroiditis Autoinmune, Síndrome de Down, Trisomía, Gen Regulador de Autoinmunidad (AIRE)

Resumen

Introducción: el gen regulador de autoinmunidad (AIRE), codificado en el cromosoma 21, desempeña un papel central en la eliminación de linfocitos T autorreactivos mediante la selección negativa en el timo. En el síndrome de Down (SD), o trisomía 21, puede inducirse una sobreexpresión de AIRE, lo que se ha relacionado con una mayor prevalencia de enfermedades autoinmunes, como la tiroiditis autoinmune.


Objetivo: analizar las variantes genéticas del gen AIRE asociadas con autoinmunidad en personas con SD, así como los mecanismos epigenéticos y ambientales que pudieran modular su expresión y/o función.


Material y métodos: se realizó un análisis in silico de variantes genéticas y microARN reguladores de AIRE, mediante la revisión de tres plataformas bioinformáticas: Ensembl, ClinVar y miRBase. El procesamiento de datos y el análisis gráfico se llevaron a cabo en Excel (Office 365) y en lenguaje R versión 4.3.0 (Bell Laboratories, EUA).


Resultados: se identificaron 1,104 variantes del gen AIRE asociadas a enfermedades autoinmunes en Ensembl, y 162 variantes patogénicas o probablemente patogénicas en ClinVar. El 19.3 % de las variantes presentaron un potencial impacto funcional. Sin embargo, entre los microARN codificados en el cromosoma 21, no se identificó evidencia concluyente de regulación negativa directa sobre AIRE, salvo reportes preliminares in vitro del miR-155.


Conclusiones: la sobreexpresión de alelos de riesgo, la presencia de variantes estructurales y la regulación epigenética podrían explicar la disfunción de AIRE y la mayor prevalencia de tiroiditis autoinmune en personas con SD. Estos hallazgos respaldan la necesidad de realizar estudios funcionales adicionales, los cuales podrían orientar futuras estrategias diagnósticas o terapéuticas.

Abstract 0 | PDF Downloads 0

Referencias

1. National Center for Biotechnology Information. AIRE autoimmune regulator. Bethesda, MD 20894, USA: National Library of Medicine; 2024. Disponible en: https://www.ncbi.nlm.nih.gov/gene/326.

2. Ensembl. Gene: AIRE ENSG00000160224. Cambridgeshire, UK. 2024 [updated October, 2024. Disponible en: https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000160224;r=21:44285838-44298648;t=ENST00000291582.

3. Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nature reviews Immunology. 2008;8(12):948-57. doi: 10.1038/nri2450.

4. Kumar PG, Laloraya M, Wang C-Y, et al. The Autoimmune Regulator (AIRE) Is a DNA-binding Protein. Journal of Biological Chemistry. 2001;276(44):41357-64. doi: 10.1074/jbc.M104898200.

5. Jan H, Arafah A, Alsuwayni BM, et al. Chapter 7 - Gene polymorphisms and their role in autoimmunity. In: Rehman MU, Arafah A, Ali MN, Ali S, editors. A Molecular Approach to Immunogenetics: Academic Press; 202; 143-68. doi: 10.1016/B978-0-323-90053-9.00009-9.

6. Tanaka PP, Oliveira EH, Vieira-Machado MC, et al. miR-155 exerts posttranscriptional control of autoimmune regulator (Aire) and tissue-restricted antigen genes in medullary thymic epithelial cells. BMC Genomics. 2022;23(1):404. doi: 10.1186/s12864-022-08631-4.

7. Huoh Y-S, Wu B, Park S, et al. Dual functions of Aire CARD multimerization in the transcriptional regulation of T cell tolerance. Nature communications. 2020;11(1):1625. doi: 10.1038/s41467-020-15448-w.

8. Fang Y, Bansal K, Mostafavi S, et al. AIRE relies on Z-DNA to flag gene targets for thymic T cell tolerization. Nature. 2024;628(8007):400-7. doi: 10.1038/s41586-024-07169-7.

9. Miller CN, Waterfield MR, Gardner JM, et al. Aire in Autoimmunity. Annual Review of Immunology. 2024;42(Volume 42, 2024):427-53. doi: 10.1146/annurev-immunol-090222-101050.

10. Ashby KM, Hogquist KA. A guide to thymic selection of T cells. Nature Reviews Immunology. 2024;24(2):103-17. doi: 10.1038/s41577-023-00927-0.

11. Malle L, Patel RS, Martin-Fernandez M, et al. Autoimmunity in Down’s syndrome via cytokines, CD4 T cells and CD11c+ B cells. Nature. 2023;615(7951):305-14. doi: 10.1038/s41586-023-05736-y.

12. Antonarakis SE, Skotko BG, Rafii MS, et al. Down syndrome. Nature Reviews Disease Primers. 2020;6(1):9. doi: 10.1038/s41572-019-0143-7.

13. Hafsah A. Penyakit Sindrom Down (Down Syndrome). June 15th, 2020:0-8. Disponible en: https://www.researchgate.net/publication/342179725_PENYAKIT_SINDROM_DOWN_DOWN_SYNDROME.

14. Akhtar F, Bokhari SRA. Down Syndrome. Treasure Island (FL) [Internet].[25 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK526016/.

15. Spinazzi NA, Santoro JD, Pawlowski K, Anzueto G, Howe YJ, Patel LR, et al. Co-occurring conditions in children with Down syndrome and autism: a retrospective study. J Neurodev Disord. 2023;15(1):9. doi: 10.1186/s11689-023-09478-w.

16. Giménez S, Altuna M, Blessing E, Osorio RM, Fortea J. Sleep Disorders in Adults with Down Syndrome. J Clin Med. 2021;10(14). doi: 10.3390/jcm10143012.

17. Hom B, Boyd NK, Vogel BN, et al. Down Syndrome and Autoimmune Disease. Clin Rev Allergy Immunol. 2024;66(3):261-73. doi: 10.1007/s12016-024-08996-2.

18. Szeliga K, Antosz A, Skrzynska K, et al. Subclinical Hypothyroidism as the Most Common Thyroid Dysfunction Status in Children With Down’s Syndrome. Frontiers in Endocrinology. 2022;Volume 12 - 2021. doi: 10.3389/fendo.2021.782865.

19. Szybiak-Skora W, Cyna W, Lacka K. Autoimmune Thyroid Disease in Patients with Down Syndrome—Review. Int J Mol Sci. 2025; 26(1). doi: 10.3390/ijms26010029.

20. Taylor PN, Albrecht D, Scholz A, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nature Reviews Endocrinology. 2018;14(5):301-16. doi: 10.1038/nrendo.2018.18.

21. Uchida K, Suzuki M. Congenital Hypothyroidism and Brain Development: Association With Other Psychiatric Disorders. Frontiers in Neuroscience. 2021;Volume 15 - 2021. doi: 10.3389/fnins.2021.772382.

22. Cinque L, Angeletti C, Orrico A, et al. Novel Pathogenic Variants of the AIRE Gene in Two Autoimmune Polyendocrine Syndrome Type I Cases with Atypical Presentation: Role of the NGS in Diagnostic Pathway and Review of the Literature. Biomedicines. 2020;8(12). doi: 10.3390/biomedicines8120631.

23. Bofill-De Ros X, and Vang Ørom UA. Recent progress in miRNA biogenesis and decay. RNA Biology. 2024;21(1):36-43. doi: 10.1080/15476286.2023.2288741.

24. Berrih-Aknin S, Panse RL, Dragin N. AIRE: a missing link to explain female susceptibility to autoimmune diseases. Ann N Y Acad Sci. 2018;1412(1):21-32. doi: 10.1111/nyas.13529.

25. Igarashi M, Ayabe T, Yamamoto-Hanada K, et al. Female-dominant estrogen production in healthy children before adrenarche. Endocr Connect. 2021;10(10):1221-6. doi: 10.1530/EC-21-0134.

26. Gorini F, Coi A, Pierini A, et al. Hypothyroidism in Patients with Down Syndrome: Prevalence and Association with Congenital Heart Defects. Children [Internet]. 2024; 11(5). doi: 10.3390/children11050513.

27. Lasrado N, Jia T, Massilamany C, et al. Mechanisms of sex hormones in autoimmunity: focus on EAE. Biol Sex Differ. 2020;11(1):50. doi: 10.1186/s13293-020-00325-4.

28. Li D, Li H, Fu H, et al. Aire-Overexpressing Dendritic Cells Induce Peripheral CD4⁺ T Cell Tolerance. Int J Mol Sci. 2015;17(1). doi: 10.3390/ijms17010038.

29. Gardner JM, Metzger TC, McMahon EJ, et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4⁺ T cells. Immunity. 2013;39(3):560-72. doi: 10.1016/j.immuni.2013.08.005.

30. Çoban U, Çelik ZB. The promoter methylations of the autoimmune regulator (AIRE) gene and matrix metalloproteinase-3 (MMP-3) gene may have a role in gestational diabetes mellitus. European review for medical and pharmacological sciences. 2023;27:1051-7. doi: 10.26355/eurrev_202302_31201.

31. Ye E, Wu E, Han R. Global, regional, and national impact of Down syndrome on child and adolescent mortality from 1980 to 2021, with projections to 2050: a cross-sectional study. Frontiers in Public Health. 2025;(13). doi: 10.3389/fpubh.2025.1554589.

32. Mulu B, Fantahun B. Thyroid abnormalities in children with Down syndrome at St. Paul's hospital millennium medical college, Ethiopia. Endocrinology, Diabetes & Metabolism. 2022;5(3):e00337. doi: 10.1002/edm2.337.

33. Meloni A, Fiorillo E, Corda D, et al. DAXX is a new AIRE-interacting protein. The Journal of biological chemistry. 2010;285(17):13012-21. doi: 10.1074/jbc.M109.037747.

34. Park SY, Kim JS. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med. 2020;52(2):204-12. doi: 10.1038/s12276-020-0382-4.

35. Information NCfB. DAXX death domain associated protein [Homo sapiens (human)] USA: National Library of Medicine; 2025. Disponible en: https://www.ncbi.nlm.nih.gov/gene/1616.

36. Białek-Dratwa A, Żur S, Wilemska-Kucharzewska K, et al. Nutrition as Prevention of Diet-Related Diseases-A Cross-Sectional Study among Children and Young Adults with Down Syndrome. Children (Basel). 2022;10(1). doi: 10.3390/children10010036.

37. Yoon H, Gerdes LA, Beigel F, et al. Multiple sclerosis and gut microbiota: Lachnospiraceae from the ileum of MS twins trigger MS-like disease in germfree transgenic mice-An unbiased functional study. Proceedings of the National Academy of Sciences of the United States of America. 2025;122(18):e2419689122. doi: 10.1073/pnas.2419689122.

38. Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 2023;80:102266. doi: 10.1016/j.coi.2022.102266.