Autoimmune Regulatory Gene (AIRE) and Development of Autoimmune Thyroiditis in Down Syndrome
Main Article Content
Keywords
Thyroiditis, Autoimmune, Down Syndrome, Trisomy , Autoimmunity Regulator Gene (AIRE)
Abstract
Background: The autoimmune regulator gene (AIRE), located on chromosome 21, plays a central role in the elimination of autoreactive T lymphocytes through negative selection in the thymus. In Down syndrome (DS), or trisomy 21, AIRE overexpression may occur, which has been associated with a higher prevalence of autoimmune diseases, such as autoimmune thyroiditis.
Objective: To analyze the genetic variants of the AIRE gene associated with autoimmunity in individuals with DS, as well as the epigenetic and environmental mechanisms that may modulate its expression and/or function.
Materials and methods: An in silico analysis of genetic variants and microRNAs regulating AIRE was conducted by reviewing three bioinformatics platforms: Ensembl, ClinVar, and miRBase. Data processing and graphical analysis were performed using Excel (Office 365) and the R programming language, version 4.3.0 (Bell Laboratories, USA).
Results: A total of 1,104 AIRE gene variants associated with autoimmune diseases were identified in Ensembl, and 162 pathogenic or likely pathogenic variants were found in ClinVar. Of these, 19.3% show potential functional impact. However, among the microRNAs encoded on chromosome 21, no conclusive evidence of direct negative regulation of AIRE was identified, except for preliminary in vitro reports involving miR-155.
Conclusions: The overexpression of risk alleles, the presence of structural variants, and epigenetic regulation could explain AIRE dysfunction and the increased prevalence of autoimmune thyroiditis in individuals with DS. These findings support the need for further functional studies and may guide future diagnostic or therapeutic strategies.
References
1. National Center for Biotechnology Information. AIRE autoimmune regulator. Bethesda, MD 20894, USA: National Library of Medicine; 2024. Disponible en: https://www.ncbi.nlm.nih.gov/gene/326.
2. Ensembl. Gene: AIRE ENSG00000160224. Cambridgeshire, UK. 2024 [updated October, 2024. Disponible en: https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000160224;r=21:44285838-44298648;t=ENST00000291582.
3. Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nature reviews Immunology. 2008;8(12):948-57. doi: 10.1038/nri2450.
4. Kumar PG, Laloraya M, Wang C-Y, et al. The Autoimmune Regulator (AIRE) Is a DNA-binding Protein. Journal of Biological Chemistry. 2001;276(44):41357-64. doi: 10.1074/jbc.M104898200.
5. Jan H, Arafah A, Alsuwayni BM, et al. Chapter 7 - Gene polymorphisms and their role in autoimmunity. In: Rehman MU, Arafah A, Ali MN, Ali S, editors. A Molecular Approach to Immunogenetics: Academic Press; 202; 143-68. doi: 10.1016/B978-0-323-90053-9.00009-9.
6. Tanaka PP, Oliveira EH, Vieira-Machado MC, et al. miR-155 exerts posttranscriptional control of autoimmune regulator (Aire) and tissue-restricted antigen genes in medullary thymic epithelial cells. BMC Genomics. 2022;23(1):404. doi: 10.1186/s12864-022-08631-4.
7. Huoh Y-S, Wu B, Park S, et al. Dual functions of Aire CARD multimerization in the transcriptional regulation of T cell tolerance. Nature communications. 2020;11(1):1625. doi: 10.1038/s41467-020-15448-w.
8. Fang Y, Bansal K, Mostafavi S, et al. AIRE relies on Z-DNA to flag gene targets for thymic T cell tolerization. Nature. 2024;628(8007):400-7. doi: 10.1038/s41586-024-07169-7.
9. Miller CN, Waterfield MR, Gardner JM, et al. Aire in Autoimmunity. Annual Review of Immunology. 2024;42(Volume 42, 2024):427-53. doi: 10.1146/annurev-immunol-090222-101050.
10. Ashby KM, Hogquist KA. A guide to thymic selection of T cells. Nature Reviews Immunology. 2024;24(2):103-17. doi: 10.1038/s41577-023-00927-0.
11. Malle L, Patel RS, Martin-Fernandez M, et al. Autoimmunity in Down’s syndrome via cytokines, CD4 T cells and CD11c+ B cells. Nature. 2023;615(7951):305-14. doi: 10.1038/s41586-023-05736-y.
12. Antonarakis SE, Skotko BG, Rafii MS, et al. Down syndrome. Nature Reviews Disease Primers. 2020;6(1):9. doi: 10.1038/s41572-019-0143-7.
13. Hafsah A. Penyakit Sindrom Down (Down Syndrome). June 15th, 2020:0-8. Disponible en: https://www.researchgate.net/publication/342179725_PENYAKIT_SINDROM_DOWN_DOWN_SYNDROME.
14. Akhtar F, Bokhari SRA. Down Syndrome. Treasure Island (FL) [Internet].[25 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK526016/.
15. Spinazzi NA, Santoro JD, Pawlowski K, Anzueto G, Howe YJ, Patel LR, et al. Co-occurring conditions in children with Down syndrome and autism: a retrospective study. J Neurodev Disord. 2023;15(1):9. doi: 10.1186/s11689-023-09478-w.
16. Giménez S, Altuna M, Blessing E, Osorio RM, Fortea J. Sleep Disorders in Adults with Down Syndrome. J Clin Med. 2021;10(14). doi: 10.3390/jcm10143012.
17. Hom B, Boyd NK, Vogel BN, et al. Down Syndrome and Autoimmune Disease. Clin Rev Allergy Immunol. 2024;66(3):261-73. doi: 10.1007/s12016-024-08996-2.
18. Szeliga K, Antosz A, Skrzynska K, et al. Subclinical Hypothyroidism as the Most Common Thyroid Dysfunction Status in Children With Down’s Syndrome. Frontiers in Endocrinology. 2022;Volume 12 - 2021. doi: 10.3389/fendo.2021.782865.
19. Szybiak-Skora W, Cyna W, Lacka K. Autoimmune Thyroid Disease in Patients with Down Syndrome—Review. Int J Mol Sci. 2025; 26(1). doi: 10.3390/ijms26010029.
20. Taylor PN, Albrecht D, Scholz A, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nature Reviews Endocrinology. 2018;14(5):301-16. doi: 10.1038/nrendo.2018.18.
21. Uchida K, Suzuki M. Congenital Hypothyroidism and Brain Development: Association With Other Psychiatric Disorders. Frontiers in Neuroscience. 2021;Volume 15 - 2021. doi: 10.3389/fnins.2021.772382.
22. Cinque L, Angeletti C, Orrico A, et al. Novel Pathogenic Variants of the AIRE Gene in Two Autoimmune Polyendocrine Syndrome Type I Cases with Atypical Presentation: Role of the NGS in Diagnostic Pathway and Review of the Literature. Biomedicines. 2020;8(12). doi: 10.3390/biomedicines8120631.
23. Bofill-De Ros X, and Vang Ørom UA. Recent progress in miRNA biogenesis and decay. RNA Biology. 2024;21(1):36-43. doi: 10.1080/15476286.2023.2288741.
24. Berrih-Aknin S, Panse RL, Dragin N. AIRE: a missing link to explain female susceptibility to autoimmune diseases. Ann N Y Acad Sci. 2018;1412(1):21-32. doi: 10.1111/nyas.13529.
25. Igarashi M, Ayabe T, Yamamoto-Hanada K, et al. Female-dominant estrogen production in healthy children before adrenarche. Endocr Connect. 2021;10(10):1221-6. doi: 10.1530/EC-21-0134.
26. Gorini F, Coi A, Pierini A, et al. Hypothyroidism in Patients with Down Syndrome: Prevalence and Association with Congenital Heart Defects. Children [Internet]. 2024; 11(5). doi: 10.3390/children11050513.
27. Lasrado N, Jia T, Massilamany C, et al. Mechanisms of sex hormones in autoimmunity: focus on EAE. Biol Sex Differ. 2020;11(1):50. doi: 10.1186/s13293-020-00325-4.
28. Li D, Li H, Fu H, et al. Aire-Overexpressing Dendritic Cells Induce Peripheral CD4⁺ T Cell Tolerance. Int J Mol Sci. 2015;17(1). doi: 10.3390/ijms17010038.
29. Gardner JM, Metzger TC, McMahon EJ, et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4⁺ T cells. Immunity. 2013;39(3):560-72. doi: 10.1016/j.immuni.2013.08.005.
30. Çoban U, Çelik ZB. The promoter methylations of the autoimmune regulator (AIRE) gene and matrix metalloproteinase-3 (MMP-3) gene may have a role in gestational diabetes mellitus. European review for medical and pharmacological sciences. 2023;27:1051-7. doi: 10.26355/eurrev_202302_31201.
31. Ye E, Wu E, Han R. Global, regional, and national impact of Down syndrome on child and adolescent mortality from 1980 to 2021, with projections to 2050: a cross-sectional study. Frontiers in Public Health. 2025;(13). doi: 10.3389/fpubh.2025.1554589.
32. Mulu B, Fantahun B. Thyroid abnormalities in children with Down syndrome at St. Paul's hospital millennium medical college, Ethiopia. Endocrinology, Diabetes & Metabolism. 2022;5(3):e00337. doi: 10.1002/edm2.337.
33. Meloni A, Fiorillo E, Corda D, et al. DAXX is a new AIRE-interacting protein. The Journal of biological chemistry. 2010;285(17):13012-21. doi: 10.1074/jbc.M109.037747.
34. Park SY, Kim JS. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med. 2020;52(2):204-12. doi: 10.1038/s12276-020-0382-4.
35. Information NCfB. DAXX death domain associated protein [Homo sapiens (human)] USA: National Library of Medicine; 2025. Disponible en: https://www.ncbi.nlm.nih.gov/gene/1616.
36. Białek-Dratwa A, Żur S, Wilemska-Kucharzewska K, et al. Nutrition as Prevention of Diet-Related Diseases-A Cross-Sectional Study among Children and Young Adults with Down Syndrome. Children (Basel). 2022;10(1). doi: 10.3390/children10010036.
37. Yoon H, Gerdes LA, Beigel F, et al. Multiple sclerosis and gut microbiota: Lachnospiraceae from the ileum of MS twins trigger MS-like disease in germfree transgenic mice-An unbiased functional study. Proceedings of the National Academy of Sciences of the United States of America. 2025;122(18):e2419689122. doi: 10.1073/pnas.2419689122.
38. Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 2023;80:102266. doi: 10.1016/j.coi.2022.102266.