How to detect scientific texts generated with artificial intelligence?

Main Article Content

Omar Chávez-Martínez https://orcid.org/0000-0003-2633-1898

Keywords

Generative Artificial Intelligence, Medical Writing, Ethics, Research

Abstract

Large language models have transformed scientific writing, which facilitates text drafting and revision, but at the same time introduces ethical and epistemological risks. Even though their use promotes linguistic equity, the lack of transparency and the manipulation of information threaten academic integrity. AI detectors —such as Originality.ai, ZeroGPT, or Turnitin— show variable effectiveness and do not provide conclusive results, especially against “text humanizers.” AI-generated texts are characterized by formal coherence, but also by predictability and stylistic uniformity. Therefore, detection must be combined with ethical and critical evaluation made by humans, and it must be understood that true scientific integrity depends on intellectual judgment rather than technological automation.

Abstract 91 | PDF (Spanish) Downloads 59

References

1. Gautam N. Regulating the unseen hand: AI, authorship, and trust in medical science. Ann Med Surg (Lond). 2025;87(8):5353-5. doi: 10.1097/MS9.0000000000003498

2. Howard FM, Li A, Riffon MF, et al. Characterizing the Increase in Artificial Intelligence Content Detection in Oncology Scientific Abstracts From 2021 to 2023. JCO Clin Cancer Inform. 2024;8:e2400077. doi: 10.1200/CCI.24.00077

3. Gao CA, Howard FM, Markov NS, et al. Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. NPJ Digit Med. 2023;6(1):75. doi: 10.1038/s41746-023-00819-6

4. Оdri GА, Ji Yun Yооn D. Detecting generative artificial intelligence in scientific articles: Evasion techniques and implications for scientific integrity. Orthop Traumatol Surg Res. 2023;109(8):103706. doi: 10.1016/j.otsr.2023.103706

5. Erol G, Ergen A, Gülşen Erol B, et al. Can we trust academic AI detective? Accuracy and limitations of AI-output detectors. Acta Neurochir (Wien). 2025;167(1):214. doi: 10.1007/s00701-025-06622-4

6. Pellegrina D, Helmy M. AI for scientific integrity: detecting ethical breaches, errors, and misconduct in manuscripts. Front Artif Intell. 2025;8:1644098. doi: 10.3389/frai.2025.1644098

7. Shi R. A comparative study on the meta-functions of artificial intelligence and human discourse markers. J Lit Art Stud. 2024;14(10):819-829. doi:10.17265/2159-5836/2024.10.008

8. Muñoz-Ortiz A, Gómez-Rodríguez C, Vilares D. Contrasting Linguistic Patterns in Human and LLM-Generated News Text. Artif Intell Rev. 2024;57(10):265. doi: 10.1007/s10462-024-10903-2

9. Reinhart A, Markey B, Laudenbach M, et al. Do LLMs write like humans? Variation in grammatical and rhetorical styles. Proc Natl Acad Sci U S A. 2025;122(8):e2422455122. doi: 10.1073/pnas.2422455122

10. Ley Federal del Derecho de Autor (Última reforma publicada el 01-07-2020) [Internet]. México: Cámara de Diputados del H. Congreso de la Unión; 1996 [consultado el 1 de noviembre de 2025]. Disponible en: https://www.diputados.gob.mx/LeyesBiblio/pdf/LFDA.pdf

11. Tribunal Federal de Justicia Administrativa. Derechos de autor. Las obras creadas por inteligencia artificial no son sujetas de protección de conformidad con la Ley Federal del Derecho de Autor. R.T.F.J.A. Novena Época. Año III, No. 36, diciembre 2024, p. 388. Publicada el 9 de diciembre de 2024 [Internet]. México: TFJA; 2024 [consultado el 1 de noviembre de 2025]. Disponible en: https://www.tfja.gob.mx/cesmdfa/sctj/tesis-pdf-detalle/47734/